$ package:copilot-language

($) is the function application operator. Applying ($) to a function f and an argument x gives the same result as applying f to x directly. The definition is akin to this:
($) :: (a -> b) -> a -> b
($) f x = f x
This is id specialized from a -> a to (a -> b) -> (a -> b) which by the associativity of (->) is the same as (a -> b) -> a -> b. On the face of it, this may appear pointless! But it's actually one of the most useful and important operators in Haskell. The order of operations is very different between ($) and normal function application. Normal function application has precedence 10 - higher than any operator - and associates to the left. So these two definitions are equivalent:
expr = min 5 1 + 5
expr = ((min 5) 1) + 5
($) has precedence 0 (the lowest) and associates to the right, so these are equivalent:
expr = min 5 $ 1 + 5
expr = (min 5) (1 + 5)

Examples

A common use cases of ($) is to avoid parentheses in complex expressions. For example, instead of using nested parentheses in the following Haskell function:
-- | Sum numbers in a string: strSum "100  5 -7" == 98
strSum :: String -> Int
strSum s = sum (mapMaybe readMaybe (words s))
we can deploy the function application operator:
-- | Sum numbers in a string: strSum "100  5 -7" == 98
strSum :: String -> Int
strSum s = sum $ mapMaybe readMaybe $ words s
($) is also used as a section (a partially applied operator), in order to indicate that we wish to apply some yet-unspecified function to a given value. For example, to apply the argument 5 to a list of functions:
applyFive :: [Int]
applyFive = map ($ 5) [(+1), (2^)]
>>> [6, 32]

Technical Remark (Representation Polymorphism)

($) is fully representation-polymorphic. This allows it to also be used with arguments of unlifted and even unboxed kinds, such as unboxed integers:
fastMod :: Int -> Int -> Int
fastMod (I# x) (I# m) = I# $ remInt# x m
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
Update the value of a sub-element of a type in a stream of elements of that type, by applying a function on streams.
Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Examples

Perform a computation with Maybe and replace the result with a constant value if it is Just:
>>> 'a' <$ Just 2
Just 'a'

>>> 'a' <$ Nothing
Nothing
An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($)  ::              (a -> b) ->   a ->   b
(<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.

Examples

Convert from a Maybe Int to a Maybe String using show:
>>> show <$> Nothing
Nothing

>>> show <$> Just 3
Just "3"
Convert from an Either Int Int to an Either Int String using show:
>>> show <$> Left 17
Left 17

>>> show <$> Right 17
Right "17"
Double each element of a list:
>>> (*2) <$> [1,2,3]
[2,4,6]
Apply even to the second element of a pair:
>>> even <$> (2,2)
(2,True)