:: [char] -> [char] -> [char] package:base

(++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.

Performance considerations

This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdown

Examples

>>> [1, 2, 3] ++ [4, 5, 6]
[1,2,3,4,5,6]
>>> [] ++ [1, 2, 3]
[1,2,3]
>>> [3, 2, 1] ++ []
[3,2,1]
Sequence actions, discarding the value of the first argument.

Examples

If used in conjunction with the Applicative instance for Maybe, you can chain Maybe computations, with a possible "early return" in case of Nothing.
>>> Just 2 *> Just 3
Just 3
>>> Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>> import Data.Char

>>> import GHC.Internal.Text.ParserCombinators.ReadP

>>> let p = string "my name is " *> munch1 isAlpha <* eof

>>> readP_to_S p "my name is Simon"
[("Simon","")]