IO -is:module

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a. There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main. IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.
A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a. There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main. IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.
A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a. There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main. IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.
A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a. There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main. IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.
A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a. There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main. IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.
British Indian Ocean Territory
Embed in the IO monad.
Weigh an action applied to an argument. Implemented in terms of validateAction.
Perform an arbitrary IO action. NB. For a version which generalizes over the underlying monad, see io
Generalization of io
Lift an IO action into the X monad
Short-hand for liftIO.
Enforce the type of expectation Useful with polymorphic expectations that are defined below.

Example

Because shouldBeExpr is polymorphic in m, compiler will choke with a unification error. This is due to the fact that hspec's it expects a polymorphic Example.
it "MyTest" $ do
"foo" `shouldBeExpr` "bar"
However, this is easily solved by io:
it "MyTest" $ io $ do
"foo" `shouldBeExpr` "bar"