Eq package:ghc-internal

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq. The Haskell Report defines no laws for Eq. However, instances are encouraged to follow these properties:
  • Reflexivity x == x = True
  • Symmetry x == y = y == x
  • Transitivity if x == y && y == z = True, then x == z = True
  • Extensionality if x == y = True and f is a function whose return type is an instance of Eq, then f x == f y = True
  • Negation x /= y = not (x == y)
Equality
Definition of propositional equality (:~:). Pattern-matching on a variable of type (a :~: b) produces a proof that a ~ b.
~
This String equality predicate is used when desugaring pattern-matches against strings.