Integral is:exact

Integral numbers, supporting integer division. The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:
  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y
An example of a suitable Euclidean function, for Integer's instance, is abs. In addition, toInteger should be total, and fromInteger should be a left inverse for it, i.e. fromInteger (toInteger i) = i.
Integral numbers, supporting integer division. The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:
  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y
An example of a suitable Euclidean function, for Integer's instance, is abs.
Pattern synonym that can be used to construct or pattern match on an Integer as if it were of any Integral type.
TextShow instances and monomorphic functions for integral types. Since: 2
Functions for parsing and producing Integral values from/to ByteStrings based on the "Char8" encoding. That is, we assume an ASCII-compatible encoding of alphanumeric characters. Since: 0.3.0
Integral numbers, supporting integer division.
An Integral is anything that satisfies the law:
\a b -> b == zero || b * (a `div` b) + (a `mod` b) == a
>>> 3 `divMod` 2
(1,1)
>>> (-3) `divMod` 2
(-2,1)
>>> (-3) `quotRem` 2
(-1,-1)
Integral classes
Integral Literal support e.g. 123 :: Integer 123 :: Word8
Integral numbers, supporting integer division. The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given suitable Euclidean functions f and g:
  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y
An example of a suitable Euclidean function, for Integer's instance, is abs.
Print integral numbers in common positional numeral systems.
Parsers for integral numbers written in positional numeral systems.
Safe overrides of the methods of class Integral.