Integral -package:aeson-optics -package:optics-core -package:lens-aeson is:exact -is:module
Integral numbers, supporting integer division.
The Haskell Report defines no laws for
Integral. However,
Integral instances are customarily expected to define a
Euclidean domain and have the following properties for the
div/
mod and
quot/
rem pairs, given suitable
Euclidean functions
f and
g:
- x = y * quot x y + rem x y with rem x y
= fromInteger 0 or g (rem x y) < g
y
- x = y * div x y + mod x y with mod x y
= fromInteger 0 or f (mod x y) < f
y
An example of a suitable Euclidean function, for
Integer's
instance, is
abs.
In addition,
toInteger should be total, and
fromInteger should be a left inverse for it, i.e.
fromInteger (toInteger i) = i.
Integral numbers, supporting integer division.
The Haskell Report defines no laws for
Integral. However,
Integral instances are customarily expected to define a
Euclidean domain and have the following properties for the
div/
mod and
quot/
rem pairs, given suitable
Euclidean functions
f and
g:
- x = y * quot x y + rem x y with rem x y
= fromInteger 0 or g (rem x y) < g
y
- x = y * div x y + mod x y with mod x y
= fromInteger 0 or f (mod x y) < f
y
An example of a suitable Euclidean function, for
Integer's
instance, is
abs.
In addition,
toInteger should be total, and
fromInteger
should be a left inverse for it, i.e.
fromInteger (toInteger i) =
i.
Integral numbers, supporting integer division.
The Haskell Report defines no laws for
Integral. However,
Integral instances are customarily expected to define a
Euclidean domain and have the following properties for the
div/
mod and
quot/
rem pairs, given suitable
Euclidean functions
f and
g:
- x = y * quot x y + rem x y with rem x y
= fromInteger 0 or g (rem x y) < g
y
- x = y * div x y + mod x y with mod x y
= fromInteger 0 or f (mod x y) < f
y
An example of a suitable Euclidean function, for
Integer's
instance, is
abs.
Integral numbers, supporting integer division.
Integral Literal support
e.g. 123 :: Integer 123 :: Word8
An Integral is anything that satisfies the law:
\a b -> b == zero || b * (a `div` b) + (a `mod` b) == a
>>> 3 `divMod` 2
(1,1)
>>> (-3) `divMod` 2
(-2,1)
>>> (-3) `quotRem` 2
(-1,-1)
Integral numbers, supporting integer division.
The Haskell Report defines no laws for
Integral. However,
Integral instances are customarily expected to define a
Euclidean domain and have the following properties for the 'div'/'mod'
and 'quot'/'rem' pairs, given suitable Euclidean functions
f
and
g:
- x = y * quot x y + rem x y with rem x y
= fromInteger 0 or g (rem x y) < g
y
- x = y * div x y + mod x y with mod x y
= fromInteger 0 or f (mod x y) < f
y
An example of a suitable Euclidean function, for
Integer's
instance, is
abs.