Integral is:exact -package:incipit-base -package:termonad -package:optics-core

Integral numbers, supporting integer division. The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:
  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y
An example of a suitable Euclidean function, for Integer's instance, is abs. In addition, toInteger should be total, and fromInteger should be a left inverse for it, i.e. fromInteger (toInteger i) = i.
Integral numbers, supporting integer division. The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:
  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y
An example of a suitable Euclidean function, for Integer's instance, is abs.
TextShow instances and monomorphic functions for integral types. Since: 2
Functions for parsing and producing Integral values from/to ByteStrings based on the "Char8" encoding. That is, we assume an ASCII-compatible encoding of alphanumeric characters. Since: 0.3.0
Integral numbers, supporting integer division.
An Integral is anything that satisfies the law:
\a b -> b == zero || b * (a `div` b) + (a `mod` b) == a
>>> 3 `divMod` 2
(1,1)
>>> (-3) `divMod` 2
(-2,1)
>>> (-3) `quotRem` 2
(-1,-1)
Integral classes
Integral Literal support e.g. 123 :: Integer 123 :: Word8
Integral numbers, supporting integer division. The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given suitable Euclidean functions f and g:
  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y
An example of a suitable Euclidean function, for Integer's instance, is abs.
Print integral numbers in common positional numeral systems.
Parsers for integral numbers written in positional numeral systems.