Num -package:haha -package:github -is:module -package:tasty

Basic numeric class. The Haskell Report defines no laws for Num. However, (+) and (*) are customarily expected to define a ring and have the following properties:
  • Associativity of (+) (x + y) + z = x + (y + z)
  • Commutativity of (+) x + y = y + x
  • fromInteger 0 is the additive identity x + fromInteger 0 = x
  • negate gives the additive inverse x + negate x = fromInteger 0
  • Associativity of (*) (x * y) * z = x * (y * z)
  • fromInteger 1 is the multiplicative identity x * fromInteger 1 = x and fromInteger 1 * x = x
  • Distributivity of (*) with respect to (+) a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
  • Coherence with toInteger if the type also implements Integral, then fromInteger is a left inverse for toInteger, i.e. fromInteger (toInteger i) == i
Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.
Basic numeric class. The Haskell Report defines no laws for Num. However, (+) and (*) are customarily expected to define a ring and have the following properties:
  • Associativity of (+) (x + y) + z = x + (y + z)
  • Commutativity of (+) x + y = y + x
  • fromInteger 0 is the additive identity x + fromInteger 0 = x
  • negate gives the additive inverse x + negate x = fromInteger 0
  • Associativity of (*) (x * y) * z = x * (y * z)
  • fromInteger 1 is the multiplicative identity x * fromInteger 1 = x and fromInteger 1 * x = x
  • Distributivity of (*) with respect to (+) a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.
Basic numeric class. The Haskell Report defines no laws for Num. However, (+) and (*) are customarily expected to define a ring and have the following properties:
  • Associativity of (+) (x + y) + z = x + (y + z)
  • Commutativity of (+) x + y = y + x
  • fromInteger 0 is the additive identity x + fromInteger 0 = x
  • negate gives the additive inverse x + negate x = fromInteger 0
  • Associativity of (*) (x * y) * z = x * (y * z)
  • fromInteger 1 is the multiplicative identity x * fromInteger 1 = x and fromInteger 1 * x = x
  • Distributivity of (*) with respect to (+) a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
  • Coherence with toInteger if the type also implements Integral, then fromInteger is a left inverse for toInteger, i.e. fromInteger (toInteger i) == i
Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.
Basic numeric class.
Basic numeric class. The Haskell Report defines no laws for Num. However, '(+)' and '(*)' are customarily expected to define a ring and have the following properties:
  • Associativity of (+) (x + y) + z = x + (y + z)
  • Commutativity of (+) x + y = y + x
  • fromInteger 0 is the additive identity x + fromInteger 0 = x
  • negate gives the additive inverse x + negate x = fromInteger 0
  • Associativity of (*) (x * y) * z = x * (y * z)
  • fromInteger 1 is the multiplicative identity x * fromInteger 1 = x and fromInteger 1 * x = x
  • Distributivity of (*) with respect to (+) a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.
x * 2 ^ y
Simple coordinate in current user coordinate.
Parse an integral number number.
e.g. 123.456
e.g. 123
e.g. 123e456, 123e-456 or 123.456E-967
Numbers We preserve whether the number was integral, decimal or in scientific form.
2
A numeric type that can represent integers accurately, and floating point numbers to the precision of a Double. Note: this type is deprecated, and will be removed in the next major release. Use the Scientific type instead.