Read package:ghc-internal

The Read class and instances for basic data types.
Parsing of Strings, producing values. Derived instances of Read make the following assumptions, which derived instances of Show obey:
  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where

readsPrec d r =  readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r

++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r

where app_prec = 10
up_prec = 5
Note that right-associativity of :^: is unused. The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where

readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))

+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))

where app_prec = 10
up_prec = 5

readListPrec = readListPrecDefault
Why do both readsPrec and readPrec exist, and why does GHC opt to implement readPrec in derived Read instances instead of readsPrec? The reason is that readsPrec is based on the ReadS type, and although ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient parser data structure. readPrec, on the other hand, is based on a much more efficient ReadPrec datatype (a.k.a "new-style parsers"), but its definition relies on the use of the RankNTypes language extension. Therefore, readPrec (and its cousin, readListPrec) are marked as GHC-only. Nevertheless, it is recommended to use readPrec instead of readsPrec whenever possible for the efficiency improvements it brings. As mentioned above, derived Read instances in GHC will implement readPrec instead of readsPrec. The default implementations of readsPrec (and its cousin, readList) will simply use readPrec under the hood. If you are writing a Read instance by hand, it is recommended to write it like so:
instance Read T where
readPrec     = ...
readListPrec = readListPrecDefault
Converting strings to values. The Text.Read library is the canonical library to import for Read-class facilities. For GHC only, it offers an extended and much improved Read class, which constitutes a proposed alternative to the Haskell 2010 Read. In particular, writing parsers is easier, and the parsers are much more efficient.
Read up to the specified number of bytes starting from a specified offset, returning the number of bytes actually read. This function should only block if there is no data available. If there is not enough data available, then the function should just return the available data. A return value of zero indicates that the end of the data stream (e.g. end of file) has been reached.
The read function reads input from a string, which must be completely consumed by the input process. read fails with an error if the parse is unsuccessful, and it is therefore discouraged from being used in real applications. Use readMaybe or readEither for safe alternatives.
>>> read "123" :: Int
123
>>> read "hello" :: Int
*** Exception: Prelude.read: no parse
A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String) pairs. Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP).
This is a library of parser combinators, originally written by Koen Claessen. It parses all alternatives in parallel, so it never keeps hold of the beginning of the input string, a common source of space leaks with other parsers. The (+++) choice combinator is genuinely commutative; it makes no difference which branch is "shorter".
This library defines parser combinators for precedence parsing.
Read a machine address from mutable array; offset in machine words. Warning: this can fail with an unchecked exception.
Read a machine address from mutable address; offset in machine words. On some platforms, the access may fail for an insufficiently aligned Addr#. Warning: this can fail with an unchecked exception.
Read an 8-bit character from mutable array; offset in bytes. Warning: this can fail with an unchecked exception.
Read an 8-bit character from mutable address; offset in bytes. Warning: this can fail with an unchecked exception.
Read a double-precision floating-point value from mutable array; offset in 8-byte words. Warning: this can fail with an unchecked exception.