foldr is:exact package:base set:included-with-ghc

Right-associative fold of a structure, lazy in the accumulator. In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an application of the operator to the first element of the list, given an operator lazy in its right argument, foldr can produce a terminating expression from an unbounded list. For a general Foldable structure this should be semantically identical to,
foldr f z = foldr f z . toList

Examples

Basic usage:
>>> foldr (||) False [False, True, False]
True
>>> foldr (||) False []
False
>>> foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']
"foodcba"
Infinite structures
⚠️ Applying foldr to infinite structures usually doesn't terminate. It may still terminate under one of the following conditions:
  • the folding function is short-circuiting
  • the folding function is lazy on its second argument
Short-circuiting
(||) short-circuits on True values, so the following terminates because there is a True value finitely far from the left side:
>>> foldr (||) False (True : repeat False)
True
But the following doesn't terminate:
>>> foldr (||) False (repeat False ++ [True])
* Hangs forever *
Laziness in the second argument
Applying foldr to infinite structures terminates when the operator is lazy in its second argument (the initial accumulator is never used in this case, and so could be left undefined, but [] is more clear):
>>> take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)
[1,4,7,10,13]
foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)