map -package:base -is:exact -is:exact -package:text -package:unordered-containers -is:exact -package:bytestring is:module

Note: You should use Data.Map.Strict instead of this module if:
  • You will eventually need all the values stored.
  • The stored values don't represent large virtual data structures to be lazily computed.
An efficient implementation of ordered maps from keys to values (dictionaries). These modules are intended to be imported qualified, to avoid name clashes with Prelude functions, e.g.
import qualified Data.Map as Map
The implementation of Map is based on size balanced binary trees (or trees of bounded balance) as described by:
  • Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming 3(4):553-562, October 1993,
  • J. Nievergelt and E.M. Reingold, "Binary search trees of bounded balance", SIAM journal of computing 2(1), March 1973.
Bounds for union, intersection, and difference are as given by Note that the implementation is left-biased -- the elements of a first argument are always preferred to the second, for example in union or insert. Warning: The size of the map must not exceed maxBound::Int. Violation of this condition is not detected and if the size limit is exceeded, its behaviour is undefined. Operation comments contain the operation time complexity in the Big-O notation (
Instances to convert between Map and association list. Copyright (C) 2009-2011 John Goerzen All rights reserved. For license and copyright information, see the file LICENSE
Strict Map. Import as:
import qualified RIO.Map as Map
This module does not export any partial or unchecked functions. For those, see RIO.Map.Partial and RIO.Map.Unchecked
Map type used to represent records and unions
Contains implementation of polymorphic type classes for data types Set and Map.
Bijections via strict maps.
Utilities for mapping or transforming Exprs.
A non-blocking concurrent map from hashable keys to values. The implementation is based on lock-free concurrent hash tries (aka Ctries) as described by:
  • Aleksander Prokopec, Phil Bagwell, Martin Odersky, "Cache-Aware Lock-Free Concurent Hash Tries"
  • Aleksander Prokopec, Nathan G. Bronson, Phil Bagwell, Martin Odersky "Concurrent Tries with Efficient Non-Blocking Snapshots"
Operations have a worst-case complexity of O(log n), with a base equal to the size of the native Word.
A slightly less trivial implementation of range sets. This is nearly identical to Data.RangeSet.List except for some important performance differences:
  • Most query functions in this module are O(log n) rather than O(n), so may be much faster.
  • Most composition functions have the same time complexity but a higher constant, so may be somewhat slower.
If you're mainly calling member, you should consider using this module, but if you're calling union, deleteRange, and other range manipulation functions as often as querying, you might stick with the list implementation. This module is intended to be imported qualified, to avoid name clashes with Prelude functions, e.g.
import Data.RangeSet.Map (RSet)
import qualified Data.RangeSet.Map as RSet
The implementation of RSet is based on Data.Map.Strict.
Maps that handle pairs of amplitudes and sampled values. They are a special form of arrows.