ap package:Cabal-syntax

In many situations, the liftM operations can be replaced by uses of ap, which promotes function application.
return f `ap` x1 `ap` ... `ap` xn
is equivalent to
liftMn f x1 x2 ... xn
The computation appendFile file str function appends the string str, to the file file. Note that writeFile and appendFile write a literal string to a file. To write a value of any printable type, as with print, use the show function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
A functor with application, providing operations to
  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*> and liftA2).
A minimal complete definition must include implementations of pure and of either <*> or liftA2. If it defines both, then they must behave the same as their default definitions:
(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y
Further, any definition must satisfy the following: The other methods have the following default definitions, which may be overridden with equivalent specialized implementations: As a consequence of these laws, the Functor instance for f will satisfy It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v
If f is also a Monad, it should satisfy (which implies that pure and <*> satisfy the applicative functor laws).
APAFML, Adobe Postscript AFM License
APL-1.0, Adaptive Public License 1.0
APSL-1.0, Apple Public Source License 1.0
APSL-1.1, Apple Public Source License 1.1
APSL-1.2, Apple Public Source License 1.2
APSL-2.0, Apple Public Source License 2.0
Apache-1.0, Apache License 1.0
Apache-1.1, Apache License 1.1
Apache-2.0, Apache License 2.0
App-s2p, App::s2p License, SPDX License List 3.16, SPDX License List 3.23, SPDX License List 3.25
Allows do-notation for types that are Applicative as well as Monad. When enabled, desugaring do notation tries to use (*) and fmap and join as far as possible.
A data type representing directed graphs, backed by Data.Graph. It is strict in the node type. This is an alternative interface to Data.Graph. In this interface, nodes (identified by the IsNode type class) are associated with a key and record the keys of their neighbors. This interface is more convenient than Graph, which requires vertices to be explicitly handled by integer indexes. The current implementation has somewhat peculiar performance characteristics. The asymptotics of all map-like operations mirror their counterparts in Data.Map. However, to perform a graph operation, we first must build the Data.Graph representation, an operation that takes O(V + E log V). However, this operation can be amortized across all queries on that particular graph. Some nodes may be broken, i.e., refer to neighbors which are not stored in the graph. In our graph algorithms, we transparently ignore such edges; however, you can easily query for the broken vertices of a graph using broken (and should, e.g., to ensure that a closure of a graph is well-formed.) It's possible to take a closed subset of a broken graph and get a well-formed graph.
A graph of nodes a. The nodes are expected to have instance of class IsNode.
O(1). Convert a graph into a Graph. Requires amortized construction of graph.
O(1). Convert a graph into a map from keys to nodes. The resulting map m is guaranteed to have the property that all ((k,n) -> k == nodeKey n) (toList m).
A Map from keys k to values a. The Semigroup operation for Map is union, which prefers values from the left operand. If m1 maps a key k to a value a1, and m2 maps the same key to a different value a2, then their union m1 <> m2 maps k to a1.
Map a function over all the elements of a container and concatenate the resulting lists.

Examples

Basic usage:
>>> concatMap (take 3) [[1..], [10..], [100..], [1000..]]
[1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>> concatMap (take 3) (Just [1..])
[1,2,3]
fmap is used to apply a function of type (a -> b) to a value of type f a, where f is a functor, to produce a value of type f b. Note that for any type constructor with more than one parameter (e.g., Either), only the last type parameter can be modified with fmap (e.g., b in `Either a b`). Some type constructors with two parameters or more have a Bifunctor instance that allows both the last and the penultimate parameters to be mapped over.

Examples

Convert from a Maybe Int to a Maybe String using show:
>>> fmap show Nothing
Nothing

>>> fmap show (Just 3)
Just "3"
Convert from an Either Int Int to an Either Int String using show:
>>> fmap show (Left 17)
Left 17

>>> fmap show (Right 17)
Right "17"
Double each element of a list:
>>> fmap (*2) [1,2,3]
[2,4,6]
Apply even to the second element of a pair:
>>> fmap even (2,2)
(2,True)
It may seem surprising that the function is only applied to the last element of the tuple compared to the list example above which applies it to every element in the list. To understand, remember that tuples are type constructors with multiple type parameters: a tuple of 3 elements (a,b,c) can also be written (,,) a b c and its Functor instance is defined for Functor ((,,) a b) (i.e., only the third parameter is free to be mapped over with fmap). It explains why fmap can be used with tuples containing values of different types as in the following example:
>>> fmap even ("hello", 1.0, 4)
("hello",1.0,True)
Map each element of the structure into a monoid, and combine the results with (<>). This fold is right-associative and lazy in the accumulator. For strict left-associative folds consider foldMap' instead.

Examples

Basic usage:
>>> foldMap Sum [1, 3, 5]
Sum {getSum = 9}
>>> foldMap Product [1, 3, 5]
Product {getProduct = 15}
>>> foldMap (replicate 3) [1, 2, 3]
[1,1,1,2,2,2,3,3,3]
When a Monoid's (<>) is lazy in its second argument, foldMap can return a result even from an unbounded structure. For example, lazy accumulation enables Data.ByteString.Builder to efficiently serialise large data structures and produce the output incrementally:
>>> import qualified Data.ByteString.Lazy as L

>>> import qualified Data.ByteString.Builder as B

>>> let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20

>>> let lbs = B.toLazyByteString $ foldMap bld [0..]

>>> L.take 64 lbs
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
Generically generate a Semigroup (<>) operation for any type implementing Generic. This operation will append two values by point-wise appending their component fields. It is only defined for product types.
gmappend a (gmappend b c) = gmappend (gmappend a b) c