sequence package:base

Evaluate each monadic action in the structure from left to right, and collect the results. For a version that ignores the results see sequence_.

Examples

Basic usage: The first two examples are instances where the input and and output of sequence are isomorphic.
>>> sequence $ Right [1,2,3,4]
[Right 1,Right 2,Right 3,Right 4]
>>> sequence $ [Right 1,Right 2,Right 3,Right 4]
Right [1,2,3,4]
The following examples demonstrate short circuit behavior for sequence.
>>> sequence $ Left [1,2,3,4]
Left [1,2,3,4]
>>> sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]
Left 0
Evaluate each action in the sequence from left to right, and collect the results.
Evaluate each action in the structure from left to right, and collect the results. For a version that ignores the results see sequenceA_.

Examples

Basic usage: For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>> sequenceA [Just 1, Just 2, Just 3]
Just [1,2,3]
>>> sequenceA [Right 1, Right 2, Right 3]
Right [1,2,3]
The next two example show Nothing and Just will short circuit the resulting structure if present in the input. For more context, check the Traversable instances for Either and Maybe.
>>> sequenceA [Just 1, Just 2, Just 3, Nothing]
Nothing
>>> sequenceA [Right 1, Right 2, Right 3, Left 4]
Left 4
Evaluate each monadic action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequence. sequence_ is just like sequenceA_, but specialised to monadic actions.
Evaluate each action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequenceA. sequenceA_ is just like sequence_, but generalised to Applicative actions.

Examples

Basic usage:
>>> sequenceA_ [print "Hello", print "world", print "!"]
"Hello"
"world"
"!"
The isSubsequenceOf function takes two lists and returns True if all the elements of the first list occur, in order, in the second. The elements do not have to occur consecutively. isSubsequenceOf x y is equivalent to x `elem` (subsequences y). Note: isSubsequenceOf is often used in infix form.

Examples

>>> "GHC" `isSubsequenceOf` "The Glorious Haskell Compiler"
True
>>> ['a','d'..'z'] `isSubsequenceOf` ['a'..'z']
True
>>> [1..10] `isSubsequenceOf` [10,9..0]
False
For the result to be True, the first list must be finite; for the result to be False, the second list must be finite:
>>> [0,2..10] `isSubsequenceOf` [0..]
True
>>> [0..] `isSubsequenceOf` [0,2..10]
False
>>> [0,2..] `isSubsequenceOf` [0..]
* Hangs forever*
The subsequences function returns the list of all subsequences of the argument.

Laziness

subsequences does not look ahead unless it must:
>>> take 1 (subsequences undefined)
[[]]

>>> take 2 (subsequences ('a' : undefined))
["","a"]

Examples

>>> subsequences "abc"
["","a","b","ab","c","ac","bc","abc"]
This function is productive on infinite inputs:
>>> take 8 $ subsequences ['a'..]
["","a","b","ab","c","ac","bc","abc"]
Alias for bisequence_.
Evaluate each action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results, see bisequence.

Examples

Basic usage:
>>> bisequence_ (print "Hello", print "World")
"Hello"
"World"
>>> bisequence_ (Left (print "Hello"))
"Hello"
>>> bisequence_ (Right (print "World"))
"World"
Sequences all the actions in a structure, building a new structure with the same shape using the results of the actions. For a version that ignores the results, see bisequence_.
bisequencebitraverse id id

Examples

Basic usage:
>>> bisequence (Just 4, Nothing)
Nothing
>>> bisequence (Just 4, Just 5)
Just (4,5)
>>> bisequence ([1, 2, 3], [4, 5])
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]
Alias for bisequence.
Stopped because there are sufficient free elements in the output to output at least one encoded ASCII character, but the input contains an invalid or unrepresentable sequence