zip package:protolude

zip takes two lists and returns a list of corresponding pairs. zip is right-lazy:
>>> zip [] undefined
[]

>>> zip undefined []
*** Exception: Prelude.undefined
...
zip is capable of list fusion, but it is restricted to its first list argument and its resulting list.

Examples

>>> zip [1, 2, 3] ['a', 'b', 'c']
[(1,'a'),(2,'b'),(3,'c')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>> zip [1] ['a', 'b']
[(1,'a')]
>>> zip [1, 2] ['a']
[(1,'a')]
>>> zip [] [1..]
[]
>>> zip [1..] []
[]
zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys
zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
zipWith is right-lazy:
>>> let f = undefined

>>> zipWith f [] undefined
[]
zipWith is capable of list fusion, but it is restricted to its first list argument and its resulting list.

Examples

zipWith (+) can be applied to two lists to produce the list of corresponding sums:
>>> zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]
>>> zipWith (++) ["hello ", "foo"] ["world!", "bar"]
["hello world!","foobar"]
The zipWithM function generalizes zipWith to arbitrary applicative functors.
zipWithM_ is the extension of zipWithM which ignores the final result.
Lists, but with an Applicative functor based on zipping.
unzip transforms a list of pairs into a list of first components and a list of second components.

Examples

>>> unzip []
([],[])
>>> unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")
The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of lists. This function is mainly used with complicated data structures or a state monad.